

Distinguished Lecturer (DL) Program

This ASHRAE Distinguished Lecturer is brought to you by the ASHRAE Society Chapter Technology Transfer Committee (CTTC).

· Please silence your phones.

2

- · DL Evaluation Forms are very important. Please complete at the end of the presentation and return to the CTTC Chair or Program Chair.
- ٠ Lecturer presentations and/or opinions do not necessarily reflect the policies or position of ASHRAE or the chapter.
- More information on the DL Program available at: ٠ ashrae.org/distinguishedlecturers

LEADERSHIP WANTED! Become a future leader in ASHRAE - Write the next chapter in your career! ASHRAE members who are active at their chapter and society becomes leaders and bring information and technology back to their job.

- You are needed for:
- Society Technical Committees
 Society Standard Committees
 Young Engineers in ASHRAE
- .
- Chapter Membership Promotion Chapter Research Promotion
- Chapter Student Activities
- Chapter Technology Transfer

Find your place in ASHRAE and volunteer

AIA Continuing Education Provider

 ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.
 AIA Course Number / classification: CWSD19, 1 LU/HSW

6

5

Learning Objectives

- · More fully understand reasons for design decisions
- Appreciate advantages and disadvantages
- Be able to explain decisions made to non-technical clients
- Keep your clients out of trouble!

Today's "Pick-Six" Menu Bypass line sizing Ice tanks upstream or downstream of chillers Use of existing coils Minimum and maximum flow limits Pumps: Manifolded or dedicated Pressure independent values

- Pressure independent valves
- <u>Buffer tank size</u>
 Variable condense
- <u>Variable condenser-water flow</u>
 Series counterflow savings (even for small)
- Series counterflow savings (even for small systems)
 Controlling chillers in series

Back to Menu

<u>Controlling chillers in series</u>
 One or two pump misperception

Primary/Secondary Operation

•Excess bypass flow \geq 1.10 x chiller flow rate

Turn chiller off when chiller(s) remaining on can satisfy load and flow

南

•Bypass line sized for 110-115% of largest chiller's flow rate

Pop Quiz How should the bypass line be sized in a VPF System?
1. Same as primary secondary
2. Smaller than primary secondary
3. There is no need for a bypass line
4. Select the valve first, then the line size

Pumps: Manifolded or dedicated
Pressure independent valves
• Buffer tank size
variable condenser-water flow
 Series counternow savings (even for small systems) Controlling chillers in series
One or two pump misperception Back to Me

· Ice tanks upstream or downstream of chillers

Today's "Pick-Six" Menu - Ice

Bypass line sizing

Example		
On peak cooling required	8,500 ton-hr, 75% diversity (peak/average load)	
Length of on peak period	12 hours	
System flow rate	1,200 gpm	
Cooling coil ∆T	20°F	
Fluid	25% ethylene glycol	
Total Peak Tons	1200*20/25.5 = 941 tons	
Available space	20 ice storage tanks	

ice tanks in series with chiller Downstream or Upstream maximize tanks, minimize demand

tank location	downstream of chiller	upstream of chiller
max ice tank capacity 20 tank space constrained	2,880 ton-hr	3,480 ton-hr
on-peak power draw	284 kW	333 kW
	Bac	ck to Menu

Today's "Pick-Six" Menu - Coils	
 Bypass line sizing Ice tanks upstream or downstream of c Use of existing coils Minimum and maximum flow limits Pumps: Manifolded or dedicated Pressure independent valves Buffer tank size Variable condenser-water flow Series counterflow savings (even for sr	mall systems)
Controlling chillers in series One or two pump misperception	Back to Menu

30

31

Example: Large	e CSA	HU		
coil face area, ft ²	40	40		
coil rows	6	6		
enhanced?	no	no	20,000 cfm	
capacity, mbh	783	783	67°F WBT	55°F DBT
supply water temperature, °F	45	41	45YF	
return water temperature, °F	55	56.68	supply-water	
water ∆T, °F	10	15.68	temperature	
water flow rate, gpm	156.01	99.46		Q _{sotal} = 783 M
water velocity, ft/sec	4.66	2.97		
water pressure drop, ft H ₂ O	16.48	7.2		

Example: Small CSAH	U			
coil face area, ft ² coil rows enhanced? capacity, mbh supply water temperature, °F return water temperature, °F water Δ T, °F water flow rate, gpm water velocity, ft/sec water pressure drop, ft H ₂ O	6 8 no 109.53 45 55 10 21.83 1.51 1.02	6 8 109.53 38 53.19 15.19 14.36 0.99 0.48	557	

coil face area, ft ²	6	6			
coll rows	8	8			
enhanced?	yes	yes			The second s
capacity, mbh	117.04	117.04			
supply water temperature, °F	45	41			
return water temperature, °F	55	56.78	55°F		
water ∆T, °F	10	15.78	451		
water flow rate, gpm	23.33	14.78			
water velocity, ft/sec	1.61	1.02			
water pressure drop, ft H ₂ O	2.72	1.38		2	

Why do Chillers Have a Minimum Flow? Chiller Stability

- Low temperature cutout
- High temperature cutout
- SurgeLost capacity
- Inconsistent supply temperature

42

Pop Quiz Answer in Chat Which design choice do you normally make? 1. Dedicated pumps (one-to-one with chillers) 2. Manifolded pumps

50

56

Manifolded Pumps

Advantages

- Redundancy, any pump can work
 with any chiller
- Can optimize pumping separately from cooling (VPF) "Overpumping" of chillers in systems with "low Δ T" •

Disadvantages with different chillers

- Hard to balance chillers with different flow rates or pressure drops
- Overlap between design and minimum flow rates in a VPF system

	Capacity	Sel				Flow Change
	(tons)	Flow (gpm)	∆P (ft H2O)	Flow (gpm)	∆P (ft H2O)	
Chiller 1	500	750	12	819	14.3	+9.2
Chiller 2	300	450	20	381	14.3	-15.3
elect eva ut balanc	porator pressuing valve in se	ire drops eries with	as close a lower pres	s possible sure drop	to one and chiller(s)	other, OR

Primary-Secondary Systems and Low ${\boldsymbol{\vartriangle}} T$ Flow rate (gpm) 750 Design

Mode	Flow rate (gpm)	Inlet Temp (°F)	Outlet Temp (°F)	Capacity (tons)	
Design	750	56	40	500	
Load conditions	1000	50	40	417	
Chiller 1	750	46.7	40	208.5	4(
Chiller 0	750	40 7	10	000 5	

"Overpumping" doesn't fix Low AT
"Overpumping" doesn't fix Low AT
The problem is at the coils
Or mitigation techniques:
Transactions: AC-02-6-1 - Degrading Chilled Water Plant Delta-T: Causes and Mitigation

Today's "Pick-Six" Menu - PICV

Bypass line sizing

- Ice tanks upstream or downstream of chillers
- Use of existing coils
- Minimum and maximum flow limits
- Pumps: Manifolded or dedicated
- Pressure independent valves
- Buffer tank size
- Variable condenser-water flowSeries counterflow savings (even for small systems)

Back to Menu

- Controlling chillers in series
- One or two pump misperception

65

<section-header><section-header><section-header><section-header><list-item><list-item><list-item>

Pressure Independent (PI) Control Valves

• C_v is the flow coefficient of the valve

• SG is the specific gravity of the fluid (water = 1.0)

• ΔP is the pressure drop for the valve (psi)

 $C_{v} = Q \times \sqrt{\frac{SG}{\Delta P}}$

• Q is the flow rate (gpm)

Where:

66

 $Q = C_{v} \times \sqrt{\frac{\Delta P}{SG}}$

215" - 6

30-713 GPM

Mechanical PI Valves

- Advantages:
- More compact • Will accept any rotary actuator
- Easier to select
- No additional power, programming, or sensor installation

- Energy limiting

•BACnet[™] Communication to BAS system for data sharing. (requires licensing and commissioning another BACnet device)

Buffer Tanks: How Big?

- Required volume = Flow rate (gpm) x Loop time (min)
- •

System volume = the amount of fluid in the coil, pipes, evaporator barrel, storage tank, etc., (gallons)

- Methods to attempt to avoid buffer tank
 - Larger pipes
 - Higher Delta T (lower flow rate)

Pop Quiz – Answer in Chat What is your opinion about variable condenser water flow?

- 1. Do it every time
- 2. Not a chance that it can work
- 3. Depends on the operators and controls
- 4. The juice isn't worth the squeeze

82

Variable Condenser Water Flow

- Determine minimum condenser-water flow rate... highest of:
 - Cooling tower minimum flow rate
 - Chiller condenser minimum flow rate
- Minimum pump speed to "lift" water from basin to top of cooling tower
- Determine optimal tower fan and condenser water pump speeds
- At all combinations of load and wet-bulb temperature experienced during the year
- Ensure controls don't cause the chiller to surge
- Document the system sequence of operation
- Help commission the system

Base System

- Variable-speed drives on chillers
- Variable-speed drives on cooling tower fans
- Condenser design flow rate: 3 gpm/ton
- Constant flow condenser water pump
- Near-optimal tower control

(minimize sum of chiller + tower kW at each operating point during the year)

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate (gpm/ton)	Cond Water Flow Type	Tower Control Method	Plant Annualized kW/ton
VS	VS	3	CF	Opt	0.5462
					Sec.

		ASHRAE GreenGui
Source	Condenser Water ∆T	The Design, Construction, and Operation of Sussessible Building There cause
	°F	
ASHRAE GreenGuide	12 - 18	
50% AEDGs • Small/Med office	(air-cooled)	
K-12 Schools	Not addressed	
 Hospitals 	≥14	
Taylor (ASHRAE Journal)	15	
ASHRAE Learning	Begin with 15	

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate (gpm/ton)	Cond Water Flow Type	Tower Control Method	Plant Annualized kW/ton
VS	VS	3	CF	Opt	0.5462
VS	VS	3	VF	Opt	0.5260
VS	VS	2	CF	Opt	C.5255

Chiller Type	Cooling Tower Fan	Cond Water Flow Rate (gpm/ton)	Cond Water Flow Type	Tower Control Method	Plant Annualized kW/ton	
VS	VS	3	CF	Opt	0.5462	7
VS	VS	3	VF	Opt	0.5260	2
VS	VS	2	CF	Opt	0.5255	5
VS	VS	2	VF	Opt	0.5252	
					No.	G

Similar savings tre	nds
 In Chicago, Memp 	ohis, Albuquerque and Miami
 Office buildings ar 	nd hospitals
Two choices (Higl Performance al	ner design flow – VF, Lower design flow CF) most the same in all cases
Exception in Miam	i
 Virtually no saving design flow rate 	is for variable speed drive on condenser water pump – regardless of

Bypass li Ice tanks Use of ex Minimum Pumps: I Pressure Buffer tan	ne sizing upstream or dow kisting coils and maximum flo Manifolded or ded independent valv nk size condenser-water	nstream of chi ow limits icated res	llers
Series co	ounterflow savings	s (even for sma	all systems)
Controllir One or tv	ng chillers in serie vo pump misperce	s	Back to Menu

Wαl	oad × lift		
	Configuration	Lift	% reduction
	Parallel	61.9°F	baseline
	Series counterflow	54.05°F	12.7%
	Series duplex	50.1°F	19%
Series-S	Series Counterflow for Central Cl	hilled Water Plants,"	Back to Menu

•	Bypass line sizing
•	Ice tanks upstream or downstream of chillers
	Use of existing coils
•	Minimum and maximum flow limits
	Pumps: Manifolded or dedicated
	Pressure independent valves
	Buffer tank size
•	Variable condenser-water flow
	Series counterflow savings (even for small systems)
•	Controlling chillers in series
	One or two pump misperception Back to Menu

42°F

42°F

48°|

Loading Strategies
• Preferential loading

52°F

Upstream chiller

• Equal loading

Back to Menu

Operate an Additional Pump?

•System flow: Identical

Better? Worse?

Flow $\times \Delta P \times 0.746$

 $Pump \, kW = \frac{1}{3960 \times Pump \, eff \times Motor \, eff \times Drive \, eff}$

Savings are NOT proportional to the cube of the pump flow

•Chiller, coil and piping pressure drop identical •System pressure drop a little lower (pump and fittings) •Are pump, motor and drive efficiencies similar?

•At same efficiencies, pump power a little lower

115

Industry Recommendations Temperature Differences

Source	Chilled Water ∆T ⁰F	Condenser Water ∆1 ⁰F
ASHRAE [®] 90.1-2016	≥ 15	Not addressed
ASHRAE GreenGuide	12 - 20	12 - 18
50% AEDGs • Small/Med office • K-12 Schools	≥15 12 – 20	(air-cooled) Not addressed
Hospitals	≥15	≥14
Taylor (ASHRAE Journal)	>12	15
ASHRAE Learning Institute ChW Course	Begin with 25!	Begin with 15

and provide b	etter system	n desians.	
			ASHRAE Course in
Source	Chilled Water ∆T (°C)	Condenser Water ∆T (°C)	The Design, Contraction, and Operation of Santaleshib Bucklegs Detrained of Santaleshib Bucklegs Detrained
ASHRAE [®] 90.1-2016	≥ 8.3		
ASHRAE GreenGuide	6.7 – 11	6.7 - 10	
50% AEDGs • Small/Med office	≥8.3		
K-12 Schools	16.7 – 11		
 Hospitals 	≥18.3	≥7.8	
Taylor (ASHRAE Journal)	>6.7	8.3	
ASHRAE Learning Institute ChW Course	14	8.3	

	LL02 Lindiana and Trade Trade and a second standard sta Standard standard stand Standard standard stand Standar
	$ \begin{array}{c} D \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$
O	LL2 1.11

larch 2, 1935	
	"Well water jobs can be estimated in the
THE NAME OF A PARTY AND A PART	10 dogroo (E) rico
any 1400 Leone carried a bissistence. Br. Missourtet, intention a resident aritance for this Loose with sound intention and ar	iv degree (F) rise
The use of early exter is taking instructions provider to motions of the meaning. Whenever it is a watching or instant astudates or discript entires. In remeaning motion would be taking of the start of the start of the start of the start of the start of the instance of the start of the start of the start of a very tigs endows endows disc one the start of	in the well water temperature
police with maliafactory results. cilled to be formed to want for or empirical a first or with the second second and the second	This job on which (the) coils were used
the side show which wantly is wanth if yo no This is a sublicitudery broadened as 1 will a sublicituder	and guaranteed to maintain an 80 degree
Tall vator join stimuled in would have the	drv bulb temperature and a 50% relative
and ensuin T orientality ran much the glass range from the set of taking the damp. In some passes there the batter is extended to the set of bettered. Statistics, which is set to brance has a first set of the set of the set of the set brance, and he sides is a burthand with set of the set of t	humidity with an outside air temperature of

After 87 years it's time to listen to the industry ...and provide better system designs.

	Chilled Water ∆T ⁰F	Condenser Water ∆T °F	Operation of Survivangeline Buildings
ASHRAE [®] 90.1-2016	≥ 15	Not addressed	
ASHRAE GreenGuide	12 - 20	12 - 18	illun.
50% AEDGs Small/Med office 	≥15	(air-cooled)	*
K-12 Schools	12 - 20	Not addressed	
Hospitals	≥15	≥14	
Taylor (ASHRAE Journal)	>12	15	
ASHRAE Learning Institute ChW Course	Begin with 25!	Begin with 15	

Source	Chilled Water ∆T (°C)	Condenser Water ∆T (°C)	ASHRAE GreenGuide The Dasigs, Constitution, and Operation of Southerworks Restrings Described of Southerworks Restrings
ASHRAE [®] 90.1-2016	≥ 8.3		
ASHRAE GreenGuide	6.7 – 11	6.7 - 10	
50% AEDGs Small/Med office 	≥8.3		A Mar and
K-12 Schools	16.7 – 11		
Hospitals	≥18.3	≥7.8	
Taylor (ASHRAE Journal)	>6.7	8.3	
ASHRAE Learning Institute ChW Course	14	8.3	

Todav's "Pick-Six" Menu
Bypass line sizing
 Ice tanks upstream or downstream of chillers
Use of existing coils
Minimum and maximum flow limits
Pumps: Manifolded or dedicated
<u>Pressure independent valves</u>
Buffer tank size
<u>Variable condenser-water flow</u>
 Series counterflow savings (even for small systems)
Controlling chillers in series
One or two pump misperception Back to Menu
BONUS!!!

