Very high efficiency DOAS: A High-Performance HVAC Approach for Better IAQ, Savings and Resilience

Jordan Pratt, PE, CEM Senior Engineer, Energy 350

Who is NEEA?

What is BetterBricks?

>> Learn more at BetterBricks.com

Discussion Topics

- WHY high-performance HVAC?
- WHAT is very high efficiency DOAS?
- **BENEFITS** of this approach
- **RESULTS** from Oregon projects

Why high-performance HVAC?

Why high-performance HVAC?

HVAC is Expensive & Energy Intensive

Energy use in U.S. commercial buildings by major end uses, 2012 trillion British thermal units

Source: U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary, Table 5 (March 2016)

What is very high efficiency DOAS?

High-Efficiency HRV/ERVs

E			
Greenheck	ERVe-20-15L1	ERV	
Greenheck	ERV-20-15L1	ERV	
Greenheck	ERV-45-15L1	ERV	82% at 75% flow (AHRI database)
Greenheck	ERCH-20-15L1	ERV	
Greenheck	ERCH-45-15L1	ERV	
Oxygen8	Ventum H05	HRV	82.8% at 75% flow (AHRI software)
Oxygen8	Ventum H10	HRV	82.9% at 75% flow (AHRI software)
Oxygen8	Ventum H15	HRV	83% at 75% flow (AHRI test data)
Oxygen8	Ventum H20	HRV	
Oxygen8	Ventum H25	HRV	83 11% at 75% flow (AHRI software)
Oxygen8	Ventum H30	HRV	
Swegon	Gold RX 05	HRV	_
Swegon	Gold RX 07	HRV	
Swegon	Gold RX 08	HRV	>84% (PHI database)
Swegon	Gold RX 11	HRV	
Swegon	Gold RX 12 MTE	ERV	>83% per (AHRIS software)

-			
Swegon	Gold RX 14 MTE	ERV	
Swegon	Gold RX 20 MTE	ERV	
Swegon	Gold RX 25 MTE	ERV	
Swegon	Gold RX 30 MTE	ERV	
Swegon	Gold RX 35 MTE	ERV	>83% per (AHRIS
Swegon	Gold RX 40 MTE	ERV	software)
Swegon	Gold RX 50 MTE	ERV	
Swegon	Gold RX 60 MTE	ERV	
Swegon	Gold RX 70 MTE	ERV	
Swegon	Gold RX 80 MTE	ERV	
Tempeff	RGL 5500	HRV	
Tempeff	RGL 6500	HRV	
Tempeff	RG 1000	HRV	82.5% at 75% flow (third-party testing
Tempeff	RG 1500	HRV	provided at 20 and
Tempeff	RG 2000	HRV	16.7 deg F performance
Tempeff	RG 3000	HRV	software
Tempeff	RG 4000	HRV	deg F)
Tempeff	RG 5500	HRV	
Tempeff	RGL 1500	HRV	

Tempeff	RGL 2000	HRV	
Tempeff	RGL 3000	HRV	82.5% at 75% flow (third-party
Tempeff	RGL 4000	HRV	testing provided at 20 and 16.7 deg F performance software
Tempeff	RGL 5500	HRV	confirmation at 35 deg F)
Tempeff	RGL 6500	HRV	
Ventacity	VS1000 RTh	HRV	
Ventacity	VS1000 RTe	ERV	PHI Certified RTh hHR= 82%
Ventacity	VS3000 RTh	HRV	Rte hHR= 82%* *Includes latent recovery
Ventacity	VS3000 RTe	ERV	
Ventacity	VS1200CMh	HRV	Ventacity test summary shows 83.3% at 75% flow. PHI Test data: 81.1% th eff at 54% flow.
Ventacity	VS900CMh	HRV	PHI Certified Ventacity test summary: 84.3% at 57% airflow PHI data: 81.6% at 55% airflow
Ventacity	VS250CMh	HRV	Ventacity test summary shows 81.7% at 76% flow. PHI data: >78%

BetterBricks

System Benefits

Why Upgrade Your HVAC?

Save energy & money

by reducing building energy use by an average of 36%, and HVAC energy use by an average of 65%.

Better indoor air quality

due to filtered 100% outside air being brought into the space, with little to no recirculation

Increased occupant comfort

through improved temperature stability and the ability to create zones with unique temperature controls

Meets/Exceeds 2018 WSEC for DOAS in many building types

Efficiency = Comfort

Efficiency Matters:

 Comfort is enhanced
Energy efficiency is significantly improved

Efficiency = Significant Savings

Efficiency Matters:

20% increase in efficiency translates to more than 50% reduction in energy use

Increased Ventilation and Energy Cost

Results from Oregon Projects

CASE STUDY:

New Day Preschool

LOCATION: Portland, OR sq. ft.: 2,900 cost/sq. ft.: \$22.80

EXISTING SYSTEM:

Constant volume 5-ton packaged heat pump RTU

NEW SYSTEM:

(2) 1.5-ton ductless heat pumps(1) 2-ton ducted mini-split heat pump(1) 1000 cfm HRV

reduction in total building energy use

"The drastic difference in air quality is amazing! Before the renovation, our building was hot, stuffy and humid, and we had lots of odor issues in the classroom. Now the classroom air is fresh and odor-free. The air really does feel fresh and clean.

With air quality such a major topic of discussion during the pandemic, it has been comforting to know we are having a constant exchange of fresh air in our buildings at all times."

- New Day School administrator

New Day Preschool

"I think very high efficiency DOAS is a great choice for preschools to ensure high air quality at the developmental phase of a child's growth when their bodies are developing, their lungs are growing, and fresh air is so vital to their health.

Teachers and staff feel safer in a building with a high standard of air filtration and flow. Knowing that stagnant air is moved out of the building and the incoming air is fresh and filtered makes everyone feel much safer."

- New Day School administrator

CASE STUDY:

Portland Office Building [7,659 sq. ft.]

EXISTING SYSTEM:

(2) Constant Volume Packaged Gas Rooftop Units

(25 tons heating, 16.5 tons cooling)

NEW SYSTEM:

(1) VRF Heat Pump System(2) 1000 cfm HRVs

(11 tons heating, 10 tons cooling)

35.8 Existing HVAC EUI

23.3 New HVAC EUI

reduction in total HVAC energy use

reduction in total building energy use

*Preliminary savings results are based on 10 months of metered HVAC data and annualized to a typical weather year.

Right-Sizing Example

Existing System

	Cooling Capacity	Heating Capacity	Zones
(2) CAV Packaged Gas RTUs	16 tons	293 MBH	2

39% Cooling Capacity Reduction

54% Heating Capacity Reduction

Conversion System

	Cooling Capacity	Heating Capacity	Zones
(2) 1000 cfm HRVs	16 tons	293 MBH	2
VRF Heat Pump	10 tons	135 MBH	7

Peak Cooling Loads

Input	Value	Unit
Conditioned Floor Area	7,659	ft^2
Window Area	739	ft^2
Window Thermal Resistance	R-2.2	°F-ft^2-h/btu
Wall Thermal Resistance	R-1.8	°F-ft^2-h/btu
Roof Thermal Resistance	R-36	°F-ft^2-h/btu
Peak Occupancy	94	people
Average Infiltration	0.032	cfm/ft^2
Lighting Power Density	0.79	watts/ft^2
Equipment Power Density	1.21	watts/ft^2
Average Ventilation	0.19	cfm/ft^2
Design Cooling (0.4%)	91.2	°F
Design Heating (99.6%)	25.0	°F

Hot Weather Resilience

CASE STUDY:

Portland Law Office Building [12,000 sq. ft.]

EXISTING SYSTEM:

(9) RTUs

(43 tons heating, 35 tons cooling) NEW SYSTEM:

(1) VRF System(4) 1000 cfm HRVs

(18 tons heating, 16 tons cooling)

51.4 Existing EUI

19.1 New System EUI

Total Project Cost: \$15.61/sf

reduction in total building energy use

CASE STUDY:

Monument Grade School

LOCATION: MONUMENT, OR BUILT: 1965 | sq. ft.: 7,200 COST/Sq. ft.: \$13.86 (before incentives)

EXISTING SYSTEM:

5x 2.5-ton unitary heat pumps, 1-3 space heaters per classroom

NEW SYSTEM:

5x 2-ton ductless heat pumps 1x 1.5-ton ductless heat pump 1x Ventacity Systems 1000RT HRV

reduction in total HVAC energy use

reduction in total building energy use

Normalized Use & Savings

In the 12 months following the installation, data shows the school has reduced their energy use by almost 60,000 kWh— **60% HVAC energy use reduction**—when compared to the previous system and when normalizing for weather.

Ideal Building Types

- Schools, office, government, retail
- Small-to-medium sized buildings
- New construction
- Major renovations/retrofits

Learn More

- Case studies
- Pilot report details and findings
- Design requirements and guidelines
- Qualifying ERV/HRV manufacturers and products
- Research, including economic and indoor air quality analyses

betterbricks.com/resources/what-is-a-very-high-efficiency-dedicatedoutside-air-system

Thank You

Jordan Pratt, PE, CEM jpratt@energy350.com

Visit us at: BetterBricks BetterBricks.com

Appendix Slides

