High-performance Chilled-water Systems

Susanna Hanson, CEM DGCP
Chilled-water system
Chilled-water system components
Connectivity
Diagnostics
Minimally-compliant Chiller Plant

<table>
<thead>
<tr>
<th>Conventional assumption for code range</th>
<th>0.75-0.90 kW/ton (annual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.1-2010 Chillers + towers + CW pumps</td>
<td>.68-.88</td>
</tr>
<tr>
<td>90.1-2013 Chillers + towers + CW pumps</td>
<td>.66-.86</td>
</tr>
</tbody>
</table>

It’s easy to operate in what would have been deemed “excellent,” just by meeting code.
Model ≠ Reality

• Assumption that flow perfectly varies with load
 • Coil performance assumptions
 • Hydronic dynamics ignored
 • Low delta T “syndrome”
 • Effect of instability on coil performance
 • If flow is unpredictable, so is pump energy
• Effects of above on equipment (pump and chiller) staging
 • Running more chillers (and pumps, and towers) than necessary
 • Chiller capacity assumed to follow load
 • Advanced models use a function of load and condensing pressure
 • None reduce chiller capacity based on low distribution delta T
• Simplified chilled water reset effects on chiller energy
 • No coil performance adjustments
Coil Performance, Traditional Energy Models

• Idealized generic coil curves
 • Models don’t let waterside affect airside, vice versa
• Same method we used forever
• New EnergyPlus based engines have some new capability
Coil Performance, New Models

- Air and waterside connected better
- Still doesn’t model instability and overcooling
- Still doesn’t model effects of occupant behavior
Responses to Discomfort and Their Effects

• **Occupant:**
 - lower zone setpoint – increases GPM, may increase fan speed
 - supplement airflow – fans appear under desks
 - complain

• **Operator:**
 - lower leaving air setpoint – decreases coil performance
 - pumps in manual, raise setpoint/speed – increases GPM, pressure
 - disable SA reset – lowers leaving air temp and increases reheat
 - reduce ventilation – lowers coil entering air temp, degrades coil perf

• All reduce system performance
 - Low delta T and poorer coil performance
 - Increase overcooling/reheat
 - “Out of flow-- out of chiller-- need another chiller…”
 - “Maybe I just need the system balancer back out here”
 - “We must need tertiary pumps”
The Engineers’ Dilemma

• Conservatism and unknowns
• Low pressure drop waterside
• Low pressure drop airside
• Fit in the box!
• Fit it in the budget!
• And we don’t have money for reverse return piping
• Or pressure independent control valves
• But OK spend money for balancing valves and balancers!
Industry Recommendations

<table>
<thead>
<tr>
<th>Source</th>
<th>Chilled Water ΔT (ºF)</th>
<th>Condenser Water ΔT (ºF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHRAE 90.1-2016 requirement</td>
<td>≥ 15</td>
<td>NA</td>
</tr>
<tr>
<td>ASHRAE GreenGuide</td>
<td>12 - 20</td>
<td>12 - 18</td>
</tr>
<tr>
<td>Kelly and Chan</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>Taylor</td>
<td>>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Chilled Water Optimizations – ASHRAE 90.1

- Coil selection for 15°F ΔT or higher (57°F min return)
- Chilled water reset based on critical valve position
 - or -
- Pump pressure reset based on critical valve position
APD versus WPD versus Size
Configuration Options

- Coil face area
- Number of rows of tubes
- Tube diameter
- Number of fins
- Fin surface design
- Coil circuiting
- Turbulators
Construction Options

- Tube material
- Tube wall thickness
- Fin material
- Fin thickness
- Casing material
- Header type and material
- Coil coatings
Coil circuiting

- single-row serpentine
- dual-row serpentine
- partial-row serpentine
Water Velocity-Related Concerns

Water velocity too low:
- Tube fouling
- Air trapped in the coil
- Poor water distribution
- Risk of freezing

Water velocity too high:
- Tube erosion
- High water pressure drop
- Noise
Guidelines for Water Velocity

AHRI Standard 410
Forced-Circulation Air-Cooling and Air-Heating Coils
Laminar Flow ≠ Severe Capacity Drop-off

![Graph showing the relationship between Reynolds Number, water flow rate, and coil capacity. The graph compares pre-2001 AHRI prediction model (McAdams) and AHRI 410-2001 prediction model (Colburn-j heat transfer factor). The diagram highlights the distinction between laminar and transitional flow regimes.](image-url)
Supply-Water Temp and ΔT

$Q_{\text{total}} = 329 \text{ MBh}$

8500 cfm

80°F DBT, 67°F WBT

55°F DBT, 54°F, 44°F

water ΔT

supply-water temperature
<table>
<thead>
<tr>
<th></th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>coil face area, ft(^2)</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>coil rows</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>coil fins, fins/ft</td>
<td>95</td>
<td>127</td>
</tr>
<tr>
<td>supply water temperature, °F</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>return water temperature, °F</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>water ∆T, °F</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>water flow rate, gpm</td>
<td>65.6</td>
<td>50.4</td>
</tr>
<tr>
<td>water velocity, ft/sec</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>water pressure drop, ft H(_2)O</td>
<td>8.2</td>
<td>5.1</td>
</tr>
<tr>
<td>air pressure drop, in H(_2)O</td>
<td>0.68</td>
<td>0.77</td>
</tr>
<tr>
<td>cost of the coil</td>
<td>base</td>
<td>base + 7%</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value 1</td>
<td>Value 2</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Coil face area, ft²</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Coil rows</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Coil fins, fins/ft</td>
<td>95</td>
<td>127</td>
</tr>
<tr>
<td>Supply water temperature, °F</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Return water temperature, °F</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>Water ΔT, °F</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Water flow rate, gpm</td>
<td>65.6</td>
<td>50.4</td>
</tr>
<tr>
<td>Water velocity, ft/sec</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Water pressure drop, ft H₂O</td>
<td>8.2</td>
<td>5.1</td>
</tr>
<tr>
<td>Air pressure drop, in H₂O</td>
<td>0.68</td>
<td>0.77</td>
</tr>
<tr>
<td>Cost of the coil</td>
<td>Base</td>
<td>Base + 7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>coil face area, ft(^2)</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>coil rows</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>coil fins, fins/ft</td>
<td>95</td>
<td>127</td>
</tr>
<tr>
<td>supply water temperature, °F</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>return water temperature, °F</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>water (\Delta T), °F</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>water flow rate, gpm</td>
<td>65.6</td>
<td>50.4</td>
</tr>
<tr>
<td>water velocity, ft/sec</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>water pressure drop, ft H(_2)O</td>
<td>8.2</td>
<td>5.1</td>
</tr>
<tr>
<td>air pressure drop, in H(_2)O</td>
<td>0.68</td>
<td>0.77</td>
</tr>
<tr>
<td>cost of the coil</td>
<td>base</td>
<td>base + 7%</td>
</tr>
</tbody>
</table>

[Image of a cooling coil with specifications: 80°F DBT, 67°F WBT, 329 MBh, 8500 cfm, 80°F DBT, 67°F WBT]
Low-Flow Chiller Plants

![Graph showing chiller and pump kW at different temperature differences (ΔT).]
Low Delta-T (High Flow) Syndrome

• Symptom of poor heat transfer at the coil and impacts:
 • Energy
 • Excessive pump energy
 • Excessive fan energy
 • Excessive chiller energy
 • Comfort
 • Degrades dehumidification and temperature control
 • Capacity
 • Running out of chilled water distribution capacity
Why is Low Delta T Bad?

- Tough to model = tough business case
- Chillers get blamed
- Fouling gets blamed
- Filters get blamed
- System balancer gets blamed
- Engineer gets blamed
- Customers and occupants unhappy
Wasted Energy Transporting Tons

- \(Tons = \frac{(\Delta T \times GPM)}{24} \)

Solving for gpm...

- \(GPM = \frac{(Tons \times 24)}{\Delta T} \)

Pumping power...

- Frictional Head; Flow\(^2\)

- Water HP (bhp) = \(\frac{(GPM \times \text{head (ft)})}{3960} \)

- Water HP; Flow\(^3\); Delta T\(^3\)
Yes BUT, Coil Delta T is lower at Part Load
Is it physics or is it something else?

- AHRI Certified Coil
- Air Flow (VAV) unloading
- Entering air conditions matter
 $f(OA\%, \ OA\ temp)$
Reason 1: 3-Way control valves
undesirable mixing in variable flow systems

- Eliminate them!

Coil Delta T = 17°F
System Delta T = 8.5°F

50% Coil Load

CHWR = [(42° x 50) + (59° x 50)] / 100 = 50.5°
Reason 2: Supply air setpoint depression
overdriving coil capacity

1. 3-way control valves
2. Control setpoint depression
 • Avoid, limit and restore

- 55° LAT = 16° DT = 1.5 gpm/ton 😊
- 52° LAT = 11° DT = 2.2 gpm/ton 😞
- 50° LAT = 8.5°DT = 2.8 gpm/ton 😞
Effect of responses to discomfort

How does this happen?
Operator lowers leaving air setpoint
Operator disables supply air reset

+ 32% Total, +257% Latent

[Bar chart showing total cooling in tons for different leaving air temperatures, with annotations for Latent and Sensible cooling.]
Reason 3: Warmer chilled water supply
reduced heat transfer driving force “LMTD”

1. 3-way control valves
2. LAT setpoint depression
3. Warmer chilled water
 • *Chilled water reset only at part load*

- 42° CHWS = 16° DT = 1.5 gpm/ton 😞
- 47° CHWS = 7.5° DT = 3.2 gpm/ton 😞
- 50° CHWS = 5°DT = 4.8 gpm/ton 😞
Excessive CHW reset

- Warm supply water temperature causes Low ΔT, High Flow
- Entering air temp is reduced at part load

8000 cfm Cooling Coil

<table>
<thead>
<tr>
<th>Total Capacity (MBh)</th>
<th>Coil Entering Water (°C)</th>
<th>Coil Leaving Water (°C)</th>
<th>Delta T (°C)</th>
<th>Flow (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>315</td>
<td>4.4</td>
<td>13.3</td>
<td>8.9</td>
<td>39.36</td>
</tr>
<tr>
<td>315</td>
<td>6.7</td>
<td>12.2</td>
<td>5.6</td>
<td>62.53</td>
</tr>
</tbody>
</table>

CHW reset OK in high DT designs and at chiller min flow in VPF system
Reason 4: Deficient control valves
poor flow control at full and part loads

1. 3-way control valves
2. LAT setpoint depression
3. Warmer chilled water
4. Deficient control valves

Control Valve Issues
1. Improperly Selected / Oversized
2. Worn-out
3. Unstable control
4. $29.95 (cheap)
5. 3-way valves
Reason 4: Deficient control valves
poor flow control

1. 3-way control valves
2. LAT setpoint depression
3. Warmer chilled water
4. Deficient control valves
 • Specify quality valves specific to use

8th floor control point
20 ft pd

2nd floor pressure
90 ft pd
Reason 4: Deficient control valves

poor flow control

1. 3-way control valves
2. LAT setpoint depression
3. Warmer chilled water
4. Deficient control valves

Pressure independent valves? (PICV)

- Not always required
- Reverse return piping can help
- Can be beneficial

1. Mechanical
2. Electronic
Pressure Independent Control Valves

- Mechanical PI valve
- Electronic PI valve

Modulating control valve
Pressure regulating valve

FLOW

CONTROL SHAFT ROTATES TO MODULATE FLOW
SPRINGS
PISTON
SEAL
CONTROL SURFACES

1/2” - 2”
1.65-100 GPM

2 1/2” - 6”
80-713 GPM
Mechanical PI Valves

Advantages:
• More compact
• Will accept any rotary actuator
• Easier to select
• No additional power, programming, or sensor installation
• Now available with data sharing
Electronic PI Valves

Advantages:
• Potential for lower hardware costs
• Provides load measurement
• Programmable for various operation methods:
 • Flow limiting
 • ΔT limiting
 • Energy limiting
• BACnet™ Communication to BAS system for data sharing.
 (requires licensing and commissioning another BACnet device)
PI Valves—Summary

• Advantages:
 • More stable and accurate
 • Increased delta T
 • Easier to select
 • Easier to install
 • May be cost neutral
Reason 5: Tertiary pumping
undesirable mixing is hard to prevent

1. 3-way control valves
2. LAT setpoint depression
3. Warmer chilled water
4. Deficient control valves
5. Tertiary pumping / bridge tender circuits
 - Don’t mix to the return - simply pressure boost
Why is Low Delta T Bad for the chiller plant?

Normal Operation (16° ΔT)

- 1000 gpm / 42 F
- 1000 gpm / 54.8 F
- 200 gpm / 42 F
- 300 gpm / 42 F
- 500 gpm / 42 F

Load Coils:
- 200 tons / 58 F
- 333 tons / 58 F

80% Load Coil Load
Why is Low Delta T Bad for the chiller plant?

Harmless? LDT (12.8° ΔT)

Pump Energy
+25% to +80%

80% Load Coil Load
Why is Low Delta T Bad for the chiller plant?

Moderately Low Delta-T (10° ∆T)

- 1000 gpm / 42 F
- 100 gpm / 53 F
- 200 tons / 53 F
- 333 tons / 53 F
- 480 gpm / 43 F
- 800 gpm / 43 F

- 0% CHWR
- 64% Pump Energy
- 80% Load Coil Load

The vortex of death
Why is Low Delta T Bad for the chiller plant?

Severe Low Delta-T (6.4° ∆T)

Chiller Energy

Pump Energy

80% Load Coil Load
Why is Low Delta-T Bad?

Energy
• Excessive pump energy
• Increased chiller plant energy
 • More pumping energy
 • Chillers running at inefficient load points.

Capacity
• Running out of distribution capacity
• Chiller won’t load

Leads to overrides/manual operation
Case Study

- Demonstrated some AHU control problems
- Two floors:
 - 3rd floor AHU kept existing conventional valves
 - 4th floor AHU retrofitted with PI valves
Case Study

Temp/pressure/valve test w 4th floor 26300-30000

3rd floor (conventional)
4th floor (PI valve)

3rd floor CHW Delta T
4th floor CHW Delta T
Some Causes of Low Delta T

Flow Control
• Three-way valves
• Cheap control valves
• Uncontrolled loads
• Excessive pump pressure
• Building “bridge circuits”

Load
• Undersized coils
• Improper AHU setpoints

Maintenance
• Dirty filters or coils
• Coils piped backwards

Control
• Low AHU set points
• Unstable valve control
• Control calibration
• Improper CHW reset
• Diluted CHW supply temp
Low Delta-T Syndrome

What is the number one thing you can do to improve the performance of a chiller plant?

FIX THE AIR SIDE!
Low Delta-T Syndrome

Some Band-Aids...

- Lower the chiller’s setpoint
- Open the chiller balancing valves to allow more “constant” flow to the chillers
- Convert to Variable Primary / Variable Secondary
- Convert to Variable Primary Flow

But the best thing to do is: FIX THE AIR SIDE!
Avoiding Low Delta-T is a Discipline

• AHU maintenance
• AHU setpoint vigilance
• Pumping pressure vigilance
• Coil selection requirement compliance
• Coil control valve specification compliance
 • “Pressure independent” valves help
• AHU control commissioning
All Systems Have Issues

• All systems require attention to maintain peak performance
• All systems have deficiencies in their energy models
• Most energy can be saved in operation
• Better design choices make it easier to do so
• Get more data and turn it into intelligence
Questions...